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Abstract 
This paper presents a simple, but reliable, method for predicting the performance of multiple gas wells in complex reservoir 
shapes.  Using an approximation of the traditional “image well” method, pressure and production profiles can be generated 
for arbitrary shaped reservoirs, with internal boundaries and similar heterogeneity, as well as multiple well completions.  The 
procedure will allow for modeling and analysis, as well as forecasting of complex operating conditions including varying rate 
and flowing pressure schedules (including shut-in) for conventional and unconventional gas systems without the need of 
advanced engineering mathematics or computational libraries. 

The approach overcomes many limitations of conventional analytical methods (i.e. single well solutions or limited 
reservoir shapes) which are generally unsuitable for multi-well planning, in-fill drilling, or full field development.  But, it 
also allows for petroleum engineers, without numerical simulation resources or skills, to perform field wide evaluations on 
reservoirs and wells with a variety of operating conditions.  A number of computational and quality issues are addressed 
including Laplace space inversion methods; addition of wellbore storage and skin (at wellbore and observation points); 
incorporation of absorbed gas for unconventional gas systems; pressure dependant fluid properties; reservoir heterogeneity; 
and rate forecasting.  The methodology is validated by comparison to both analytical solutions and commercial numerical 
tools. 

In short, a new mathematical approach for production modeling and forecasting has been introduced.  Mathematical 
adaptations for reservoir heterogeneity, complex reservoir shapes, multiple completions and rate forecasting are discussed.  
Adaptations and applications for both conventional and unconventional gas (including coal and shale gas) are demonstrated.  
Finally, a simple solution process is presented for quick and easy implementation in MS Excel or other common tools. 

Introduction: General History & Motivation 
Modeling of petroleum reservoirs and its application to pressure and production analysis have been studied for years, and can 
be generally classified as either numerical or analytical methods.   

In reservoir engineering, there are only a few conventional methods for analytically solving the diffusivity equation for 
liquid flow. These include separation of variables, eigenfunction expansion, similarity transform, Laplace Transform, Fourier 
Transform, as well as Green’s functions.  Unfortunately, these solutions usually lend themselves only to geometrically 
symmetrical reservoir problems. 

To overcome such problems, Lin4, Caudle5, Jankovic6, and Haitjema7 made use of superposition for approximate semi-
analytical solutions in non-symmetrical scenarios (although these methods were generally limited to steady state applications 
for isobar and streamline mapping). Similarly, Guevara-Jordan13 et al made use of this approach for streamline mapping of 
multiple wells in a sectionally homogeneous reservoir, while Britto15 et al focused on type curve generation for a finite 
anomaly near a well within an infinite reservoir. 

Acknowledging the popularity of finite-difference methods in petroleum engineering, the Green Element Method (GEM) 
and the Boundary Element Method (BEM) both have been studied extensively by Kikani1, Archer2, Pecher3, and others. With 
increasing computational power, the GEM and BEM allowed for type curve generation during both transient and 
pseudosteady state (PSS) flow behavior in complex reservoir shapes – and in some cases time-dependent boundary 
conditions.  Despite advantages over traditional analytical solutions, both GEM and BEM require programming capability for 
evaluating complex integrals and singular or ill-conditioned matrices (or at least access to numerical software libraries that 
did the calculations).  It is documented that Sageev and Horne49, who solved the problem of single well producing near a 
constant pressure or impermeable region in an infinite reservoir, encountered significant computational difficulties because of 
the complex nature of the solution.  Similarly, Britto and Grader50 who solved a similar problem had to deal with tedious 
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superposition procedures to ensure proper boundary conditions.   These procedures become even more tedious, and 
computationally expensive during gas rate forecasting which is an iterative process (impractical for desk top calculators and 
excel code). 

As a result, the objective of this paper is provide an approximate  method for calculating pressure and rate profiles for 
multiple wells within an arbitrary shaped  reservoir, solely using superposition methods without complex math or 
programming skills.   The proposed method would maintain the appeal of GEM and BEM such as the reduction of the 
dimensionality of the problem by one (discretization of the boundary and not the domain), but eliminate the need for 
evaluating complex functions, and yet be far more versatile than simple geometric solutions.     

Finally, by incorporating pressure and time transforms, the proposed solution would be suitable for accurate gas pressure-
production forecasting in both conventional and CBM applications, during transient and boundary dominated flow regimes. 

The Basic Process 
Approximating Boundaries During Transient and PSS.   
The theoretical justification of this work is based on superposition (a well known approach used in reservoir engineering 
applications), and is accurately described by Bear8 who stated that any linear combination of solutions to a homogeneous 
linear partial differential equation (PDE) is also a solution to the that same PDE.    

This statement means that if pD1 is a linear dimensionless solution for a single well in an infinite reservoir, then C1× pD1 + 
C2× pD1 + .. Cn × pD1 is also a solution where C1, C2 … Cn are arbitrary constants adjusted such that the combination is a new 
solution to the same liquid diffusivity equation, but subject to different boundary conditions.   

In traditional applications for reservoir engineering, these solutions and their coefficients manifest themselves as image 
wells where the coefficients are known a prior since the spatial locations of image wells are chosen such that they are truly 
mirror images (both rate and location) of the real physical wells.   Subsequently, it is well known that for multiple 
boundaries, there is a mirror effect between the image wells resulting in “images of image wells”.  As a result, without any 
consideration to varying rate schedule or multiple wells, generating a suitable solution for a single well in somewhat irregular 
shaped reservoir becomes a fairly tedious task due to calculating the large number of image wells (and their respective 
positions).  In many instances, infinite summations of image wells are theoretically are required to ensure a stable solution.   
Earlougher51 and Earlougher et al10 present a comprehensive background on superposition and its application to the method 
of images concept.  

In this work, a procedure is presented for approximating reservoir boundaries in complex geometries with less than a few 
dozen image wells and is adaptable for single phase oil, conventional gas and CBM reservoir modeling.  The process in this 
work was inspired by Caudle5, Jankovic6, Lin4, Leblanc53, and others who used this approach for steady-state or PSS 
problems: images wells were arbitrarily placed and their coefficients (or rates) adjusted to achieve desired boundary 
conditions.  

The flow rates of the pseudo image wells were determined such that an equal potential existed at a number of collocation 
or test points along the boundary.  For practicality, these wells are called “pseudo” image wells as they are no longer true 
mirror images of any real physical well (or another image well).   As a result, the solution process becomes a matrix problem 
as the rates at all pseudo image wells need to be determined simultaneously while evaluating the boundary conditions at test 
points.  However, it is important to note the size of the matrix is reasonable compared to finite difference and finite element 
methods due the reduction in the dimensionality of the problem (no domain gridding is required).  In other words, during the 
matrix operations, the normal potential is evaluated at a number of test points located along the boundary, and the image well 
rates calculated to ensure that difference was zero across the boundary.  Appendix 1 describes the process for generating a 
dimensionless type curve for a single well within an arbitrarily shaped reservoir. 

Haitjema7 and Jankovic6, who used a similar approach extensively in hydrology for steady-state applications, found that 
in a number of cases  the errors between test points can become large and resulting in unacceptable solutions (increasing the 
number of test points only increased the error).  The boundary condition is strictly enforced at the test points, but completely 
unrestricted at all other locations along the boundary. As a result, rather than meeting the desired boundary conditions exactly 
at the test points, an average solution was implemented by having more test points than pseudo image wells, resulting in a 
least squares solution where the boundary condition is met along the entire boundary in an average sense.  Since the solution 
only honors the desired boundary condition at a number of test points along the boundary, the solution is approximate.  If 
necessary, a singular value decomposition13 approach was used to overcome ill-conditioned matrices.    

Experimentation from the aforementioned authors has shown that 20 to 60 images wells with a 2:1 ratio of test points to 
pseudo image wells provided the best results5,13,14, and that the average distance from the boundary to the bounding wells 
should be made equal to the average spacing of real wells.   Based on less than a dozen tests, 36 pseudo image wells and 72 
test points were used for all examples presented in this work.  All pseudo image wells were placed approximately twice the 
average boundary distance from the center of the reservoir (refer to Figure 1).  Once the type curve has been generated for 
each individual well in the real system, pressure profiles can be easily generated for each well in the system using 
conventional superposition assuming well rates are known.  

Appendix 2 outlines the common calculation procedure for calculating the pressure response of multiple wells with 
varying (but known) rate history.    For rate forecasting, the problem becomes a little more complex. Specifically, the 
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superposition algorithm presented in Appendix 3 must be re-arranged for the final time step in which the rates are unknown – 
however, since the rate of any well of interest is influenced by rate of all other wells in the system, a matrix problem occurs.   
Luckily, the matrix is always populated, and simple matrix operations can be utilized to solve for unknown rates.    

Application & Testing 
Numerical Validation & Testing 
The reliability of “pseudo-image” programming was demonstrated by comparing this technique against analytical and finite 
difference simulation.  Following an example presented by Archer2, various solutions for a well is in a closed square reservoir 
with the well located at the center were evaluated (additional reservoir properties are shown in Table 1a). In this example, the 
reservoir fluid is single phase oil case.  

In Archer’s work, simulation runs were evaluated for a number of cells and gridding styles, with the number of cells 
ranging from 11x11 to 101x101 with both uniform and non-uniform gridding.  Additionally, the same case was also 
evaluated using the Kappa non-linear simulator.   The optimum results were obtained with the Kappa Voronoi gridding 
system and the pseudo-image well method as shown in Figure 2. 

Following the work of Rattu52, a type curve was generated with a numerical model using geometrically spaced grids for 
both areal and radial grids for a closed homogeneous reservoir.  In this example, the accuracy of the numerical solution was 
improved by using equally spaced grids on a logarithmic basis (incidentally logarithmic timestep spacing was used in the 
simulation runs).   Figure 3 shows good comparison between the pressure solutions obtained by the numerical and pseudo-
image approach.  For comparison, the analytical solution developed by Everdingen and Hurst30 is also shown.  Although not 
easily evaluated from Figure 3, a detailed review of the actual pressure data will show that even though the areal grid system 
can model the early time radial flow accurately, the radial grid system is preferred if highly accurate solutions are needed.   
Incidentally, as noted by Rattu, radial grids are less complex in construction and need less number of cells compared to the 
areal grids to give the same accurate solutions.  The advantage of the pseudo-image well is that there is no need to consider 
the impact of gridding on early-time behavior as the method is not discretized within the domain. Also, once the number of 
test points has been specified, then the amount of computational effort is only proportional to the number of test points 
required to generate the desired geometry.   In other words, the computational effort required to generate 8 sided polygon 
shaped reservoir may be the same as the computational effort to generate a square reservoir.   

Note that in adapting the method for transient flow, pseudo image well superposition was used as inspired by Hong-
Chen14 who concluded that a single ring of pseudo image wells would bound the reservoir as long as superposition of the 
image well rates were taken into account in the solution process.  Without the superposition effect of pseudo image wells, the 
solution was only sufficient for streamline generation.   

Testing showed that the size of dimensionless time increment, ΔtD, should be in the range of 0.06 – 0.018, which is 
impractical for the typical time domains associated with PSS.   Kikani1 showed errors greater than 30% when using a 
dimensionless time, ΔtD, step greater than 0.025.  For an error of 5% or less, a ΔtD step size of 0.005 or less was necessary, 
resulting in 2x106  steps to generate late time solutions (which are generally in the order ΔtD = 10,000). The exponential 
growth in the number of rate changes required for rate superposition of pseudo image wells is memory intensive1, and had to 
be continually repeated for each “real” well, before the various type curves could be superimposed to create a multiple well 
reservoir.    

The problem becomes more complicated when adding pressure and time transforms during gas rate forecasting as the 
procedure becomes iterative.   In order to alleviate the problem of computation speed, the solution process was adapted to 
Laplace Space as discussed in the next section of this paper.  

 
Laplace Space Formulation of the Problem 
In order to alleviate the problem of large computational calculations discussed in the previous section, the solution process 
was modified to operate predominately in Laplace space.   The advantage that can be anticipated is that this maneuver 
removes the complication arising from rate superposition1.   Another advantage (pointed out by Kikani1 and Pecher16) is that 
since the solution at a given time is now no longer dependant on the solutions at previous times (no rate superposition in real 
time), there is no accumulation of computation errors for longer solution times.    Ultimately, only space superposition 
needed to be considered in the overall solution process when generating the reservoir boundaries.  For completeness, 
Appendix 4 shows the Laplace space Green’s function for a cylindrical source in an infinite medium and the associated 
normal derivatives for the same function. 

The only significant drawback of the Laplace transform technique is the need for an inversion method of the solution back 
to the real-time space.  Originally, the solution process utilized the widely accepted Stefhest algorithm18,17. However, 
Stefhest’s method suffered from some numerical instability problems for the solution when coded in Visual Basic, 
particularly at very early times.  

An approach inspired by the work of Bourgeous19, allowed for the easy inversion of Laplace solutions by simply using 
pD(tD)=pD (s)×(s) where s =  1/tD, and tD is the time of interest.  In his work, Bourgeois did not directly claim that this 
aforementioned calculation could be used to invert Laplace solutions.  However, he did show that the Laplace and real space 
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asymptotes for the radial flow time period were nearly equivalent (assuming a vertical well, fully completed, in a 
homogeneous infinite-acting reservoir were nearly equivalent, refer to Appendix 5).   

Figure 4 shows the inversion of the solution for a single well in closed reservoir using both Stefhest and the proposed 
non-numerical method inspired by Bourgeois.   Although the results indicate that the solution is suitable for radial flow, the 
approximation is poor for dual porosity (assuming the classic Warren & Root54 model).  Figure 5 shows the Stefhest and 
Bourgeois approximation for a dual porosity scenario for an interporosity coefficient and storativity ratio of 1E-6 and 1E-1, 
respectively.  Error is also evident when wellbore storage is included (as shown in Figure 6).  Nonetheless, the results are 
adequate for PSS, the dominate flow regime in long-term deliverability forecasting.   Similar approaches have been proposed 
by other authors using Laplace space transformations in coal bed methane applications, but were found not to be satisfactory 
for all time domains, particularly PSS.  In most scenarios, the derivations of approximations were based on the assumption 
that the derivative of the function with respect to the natural logarithm approaches a straight line. These methods included 
Schapery’s method43, Najurieta’s approximation44, and what is commonly known as the complex inversion formula17 . Figure 
7 shows a comparison of some of methods evaluated in this work. 

 
De-super Position for Wellbore Storage & Skin. 
To add wellbore storage, skin, and dual porosity, a procedure generally termed “desuperposition” is utilized.  Although by 
definition, the methodology is still superposition of linear solutions, it is called desuperposition in this paper to be consistent 
with the work presented by Gringarten, Ramey, and Raghavan20, Chen and Brigham21, Argawal22, and Earlougher23.   
Although we could have used the approach introduced by Argawal, Al-Hussainy, and Ramey (1970), desuperpostion was 
simple to program.  

Desuperposition is defined as modifying known pD values to pD’s for different systems.  The approach may be used for 
any drainage shape and well location.    For example, to compute the pressure behavior, pD, for a well located in the center of 
square with wellbore storage and skin, simply a) compute the pressure disturbance for the same system without wellbore 
storage (cD = 0), b) remove (subtract) the solution for a single well in an infinite system (with zero wellbore storage or skin), 
and c) add the solution for well, including wellbore storage and skin, in an infinite system.    

To show that desuperposition was a suitable approach, the wellbore pressure profile was generated analytically for a well 
located in the center of the radial composite system according to solution presented by Ambastha41.  Using the solution using 
presented by Argarwal et al, wellbore skin and a positive skin were added in Laplace space, and then compared to a scenario 
in which wellbore storage and skin were added using desuperposition to a composite model originally generated with no 
wellbore storage or skin.   

In both cases, the Laplace solutions were inverted to real space using Stefhest’s algorithm.   Figure 8 shows a comparison 
of the two solutions.  Note, the values of CD and “ri” were chosen such that wellbore storage dominated a significant amount 
of the entire data set.  These combinations of variables may unrealistic, but the example does illustrate that procedure is 
accurate and robust when compared to analytical procedures.     

 
Influence of Anisotropy 
An isotropic system can be transformed into an equivalent anisotropic using a transformation documented by Villegran40, and 
others such as Earlougher51.  Similarly, the transformation in this work (Appendix 6) ,is used to determine an equivalent 
isotropic reservoir dimensions for a given anisotropic medium. For the coal bed methane applications discussed later, the 
directional permeability is assumed to be associated with permeability in the fractures (or cleats), and not the permeability in 
matrix system.   

In order to incorporate anisotropy, “x” and “y” coordinates were transformed as provided in (15), (16), and (17) in 
Appendix 6.   Equation (15) represents the average permeability that will be used in dimensionless pressure conversions, and 
other calculations that require an average permeability input.  

To evaluate the quality of the transformation, a test case was generated using the Kappa Voronoi simulator.   Specifically, 
a circular reservoir was generated with a radius of approx. 3,000 ft., with kx and ky set to a ratio of 0.01.  Figure 9 shows 
derivative and type curve for the transformed system as well as the explicit solution.  Figure 10 shows a comparison of the 
original and transformed reservoir shapes.  
 
Additional of Sectional Heterogeneity  
So far, the solution is presented is only suitable for constant (anisotropic or isotropic), rock properties across the whole 
reservoir domain.   This may not be practical since heterogeneities (shale lenses, structural features etc.) can occur abundantly 
in rock formations and may have a strong impact on the production pressure response.   But there is a way to model large-
scale heterogeneities and still apply the theory derived for a homogeneous medium. Specifically, the entire domain may be 
divided into several subdomains, or zones, representing regions of different but constant material properties. 

In addition to the existing matrix calculations described in Appendix 1, an additional set of equations must be added.  
These equations represent the relations between pressure and normal fluxes in both zones at the common boundary points.   
Figure 11 shows the proposed matrix for a reservoir split into 2 permeability regions. The top section accounts for the 
pseudo-image well rates required ensuring reservoir boundary conditions in one region, while section 2 represents the 
pseudo-image wells required to bound the second region.   Sections 3 and 4 represent pressure and flux continuity at the 
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interface.  However, this approach is a significant deviation from similar problems in steady-state and PSS problems, and 
requires further evaluation for the theoretical justification.  Conceptually, both reservoir regions would be independent and 
interact via the pseudo image well behavior along the interface of the two regions. 

As a result, a simpler approach has been found to work reasonably well.  Instead, the Hawkins’ equation46 (Appendix 7) is 
used to account for heterogeneity through a skin factor.  Traditionally, Hawkins’ equation has been used to approximate the 
permeability of an altered near wellbore zone, but is now used to account for sectional permeability variation within the 
subject reservoir.  

In this work, the permeability of the region of which the well is situated is considered to be the altered zone, while the 
permeability of the area beyond the well region is considered to be representative of average reservoir.  The radius of the 
altered zones is calculated based on area of the region of which the well of interest is situated.  Following the work of Sagawa 
et al49, it was found that the pressure performance well completed in a zone with a non-symmetrical high permeability streak 
could be reasonably approximated by an equivalent circular lens placed symmetrically around the wellbore.  Specifically, 
after evaluating the performance of arbitrary well position in an irregularly shaped high permeability lens, it was found that in 
that at late times, all pressure curves became identical showing similar pseudo-radial flow with the same skin factor (refer to 
Figure 12). 

As an example, a rectangular area with a permeability of 66.6 md was placed with a larger reservoir of 33.3 md (a ratio of 
2).  The area of the high permeability region is 155 Acres which equates to an effective radius of 1468 ft.  Using Hawkins 
equation, this combination of parameters provides a wellbore skin of -6.37.  Figure 13 shows a comparison of the 
dimensionless type curves for the explicit solution (using the Kappa Voronoi simulator) as well as the approximate solution.  
Although the early time transient solution is not honored, the overall rate-pressure drop relationship is honored during the 
PSS time period.  

In a second example, the well and its high permeability region is moved towards the north west corner of the 33.3 md 
reservoir as shown in Figure 14.  Also, the area of the 66.6 md region was slightly altered with an effective radius of 1932 ft.  
Using the Hawkins’ equation, an effective wellbore skin of -4.4 was calculated.   For the subject well, as shown in Figure 16, 
the long-term pressure/rate combination is honored.  

In the final example, a multiple well system is created within a square reservoir and again a high permeability zone in the 
north west corner.  The specified rate history of the well in the high permeability zone was varied from 10 to 1 and then 15 
MMscf/d at 1 year increments.   The second well located near the center of the reservoir had rates of 5, 8, and 4 MMscf/d 
also varied at 1 year increments.  An anisotropy ratio of 3:1 for kx:ky also specified.  In Figure 15, the pressure history for a) 
raw data for the well in the high permeability zone, b) a model incorporating the heterogeneity through skin, and c) a model 
without heterogeneity or the skin equivalent of -4.39.   A review of the plot shows a reasonable history match and the 
suitability of the overall process for bounding reservoirs with anisotropy and section heterogeneity. Although not shown, if 
the production from the offset well is not included, the history match fails completely.  

It surprising that Hawkins’ equation produced reasonable results at the well of interest since according to the work of 
Furui et al47, anisotropy can have a significant impact on the magnitude of the skin.  Similar to transformation of the x-y 
coordinates of the reservoir shape in the previous examples, the effective radius results of the circular altered permeability 
zone is transformed into an ellipse (refer to Figure 10).   Both Hawkin’s and Furui’s equations are provided in Appendix 7. 

Using Furui’s adaptation of the Hawkins’ equation for above heterogeneity anisotropic reservoir, a skin factor of -4.22 
was calculated – a slightly less improved situation than using the conventional Hawkins’ relationship which predicted -4.39as 
mentioned above.  Figure 15 show that both approaches produced similar results. Several hundred comparisons of Furui’s 
and Hawkins equations for anisotropy ratios of 1 to 5; drainage radii ranging from 0.6 to 563 ft; average reservoir 
permeability for the unaltered region (greater reservoir) of 0.01 to 10 md; while the altered region (wellbore vicinity) was 
maintained at 18 md.  Figure 16 shows a relatively linear skin relationship between the two methodologies.   Nonetheless, 
more work is required in this area to ensure the proposed process is suitable for larger scale heterogeneity. 

 
Gas Rate Forecasting 
The concept of pseudo-time which handles variable viscosity and compressibility (μCt) was, until recently, not amenable to a 
completely rigorous solution24.   Rahaman27 et al, introduced a new method for computing pseudo-time based upon material 
balance (Appendix 8) was primarily used for improving the forecasting of gas production when significant depletion was 
observed – gas properties are conceptually evaluated at average reservoir pressure during the life of the well.   This is 
different from the pseudo-time introduced by Agarwal28 in 1980 which focused on the pressure regime in wellbores and was 
used to correct the non-linear behavior of gas during buildups.   Without introducing pseudo-time, gas rate forecasting using 
the traditional assumption of constant compressibility under-predicts the recoverable reserves (Figure 17).   The pseudo-time 
formulation has corrected this problem and has significantly improved the quality of long-term forecasting of gas production.  

The addition of pseudo-time to this paper does present some basic problems.  Specifically, the pseudo-time formulation 
presented in Appendix 9 requires that one knows the gas rate at time  “t” – this,  of course, poses a problem when predicting 
or forecasting gas rates.   As a result, the forecast solution becomes iterative.  Specifically, the solution requires that the rate 
prediction initially be done with assuming normal or uncorrected time.  The second iteration is then done using pseudo-time 
based on the previously calculated gas rates.  Originally, convergence criteria on both gas rates and pseudo-time itself were 
incorporated in the solution process, however, extensive testing showed that five iterations are sufficient for most production 
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forecasts etc. For the work presented here, pseudo-time is based upon the total pool gas rate if multiple wells are producing in 
the reservoir.   It has been noticed that the addition of pseudo-time to the problem moderately diminishes the speed of the 
solution process.  

 
Addition of CBM.   
To ensure that the process works for single CBM or shale gas, absorbed gas must be include in the material balance 
formulation. For this simulator, the material balance formulation of Clarkson and McGovern45 is used as shown in Appendix 
9.    The form shown by Clarkson et al includes a term for average water saturation can change over time. However, for the 
purposes of this paper, it is assumed to equal Swi at all times.   In this example, data was generated using the Eclipse 
numerical simulator following the work of Clarkson et al (the data for the simulator runs are shown in the original Clarkson 
document).  In this example, the coal is a dry coal such as those found in the Horseshoe canyon found in the Western 
Canadian Sedimentary Basin. 

The results for the deliverability forecasts are shown in Figure 17.  A review of this plot will show that the deliverability 
forecast based on the pseudo-image well method produced results comparable to the numerical model. 

   
Multiwell Test 
To show that the forecast technique works for multiple wells, a symmetrical case was developed.  A 2x2 mile square 
reservoir with an OGIP of 35.4 Bcf was used.  Four wells are placed symmetrical in the reservoir such that each well should 
be produce identical drawdown behavior if produced with identical gas rates.  Additionally, the model results should compare 
very closely with a single well simulation configured with one-quarter of the drainage area.  Type curve comparison with the 
KAPPA numerical simulator was performed as well 33,34,35,36. For further verification, the analytical constant rate solution by 
Earlougher 10 et al for a single well located within the center of a rectangle was also generated – but for a square reservoir 
with ¼ of the size presented in Figure 19 (i.e. 8.85 Bcf), and with the well located centrally. 

All four wells in the reservoir model produced at a constant rate of 5 MMscf/d for a period of 8766 hours (approximately 
one year), producing a total of 7.31 Bcf.  Sandface pressures were calculated at 100 logarithmically spaced points. 

All four wells in the reservoir model calculated nearly identical sandface pressures.  Figure 21 shows the “Single-Well” 
model was very similar to any well from the original pressure forecast, with a slight difference of 13 psi (0.3% of initial 
reservoir pressure).  This suggests that a no-flow boundary is forming half-way between each well, isolating each well into an 
identical one-square-mile drainage area as shown in Figure 21.   Figure 22 shows the dimensionless pressure derivative for 
one of the 4 test wells along with a single well profile for a ¼ reservoir. 

General Solution Process 
Given the theory outlined in the previous sections, the rate pressure profile for multiple wells in an arbitrary shaped reservoir 
can be generated according to the following process. 

1) Generate individual type curves for the “real” well: 
a. Using the Laplace Space formulation of the problem, solve for the pseudo image well rates by solving the 

matrix calculations as described in Appendix 1. 
b. Repeat (a) for each time tD to generate a type curve that starts at transient and ends at pseudo steady-state. 
c. Repeat (a) for each observation point with the reservoir (corresponding to remaining real well locations). 
d. Convert the type curve to the real space formulation of the problem using pD(tD)=pD (s)×(s) where s =  1/tD. 
e. Use De-superposition to add wellbore storage, dual porosity, skin, etc. to the existing type curves.  
f. When evaluating wellbore pressure for known rates, generate: 

i. Generate pseudo-time for the given rate history, and a pseudo-pressure table from known fluid 
properties. 

ii. Convert pseudo-time from (i) to dimensionless time (tDa), and lookup dimensionless pressure (pD) 
from (d) above.   

iii. Using pseudo-pressure table, convert dimensionless pressure (pD) to pseudo-pressure, and then 
convert pseudo-pressure to real wellbore pressures (pwf).    

2) Generate multi-rate responses for individual or multiwell reservoirs 
a. If rate forecasting, skip (2) and proceed to (3). 
b. After performing (1) above, use conventional superposition as described in Appendix 2 for generating single 

or multi-rate responses. 
3) Use conventional superposition-in-time to generate multi-rate scenarios for each well.  

a. When evaluating rates for known wellbore pressure history, generate: 
i. Generate pseudo-pressure table from known fluid properties.     

ii. Convert pseudo-pressures to dimensionless pressure (pD), and back calculate rate “q” for desired 
dimensionless real time (tD) according to Appendix 3. 

iii. Calculate new pseudo-time tDa based on q, and repeat procedure until q and tDa convergence. 
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Conclusions & Further Work 
The following conclusions and recommendations were observed:  
a) A single ring of pseudo-image wells can be used to generate no-flow boundaries for arbitrary shaped reservoirs, with 

multiple wells.  Anisotropy can be easily incorporated into the process through coordinate transformation.  Also, 
sectional heterogeneity can be incorporated into the process using a skin equivalent (although further work is required 
to evaluate approximation for multiple permeability sections etc.) 

b) The methodology presented appears to be suitable for long-term pressure and production forecasting, using pseudo-
time and pseudo-pressure transformations.   The procedure can also be adapted for single phase CBM (or similar) by 
incorporating the appropriate material balance and pseudo-time modifications. 

c) Anisotropy (directional permeability) can be easily incorporated into the solution using simple transforms 
d) There is room for additional research into adapting the method for multiphase flow.  

Nomenclature 
A Reservoir Area (ft2) 
Bg Gas FVF (Dim) 
Bgi Gas FVF at Initial Conditions (Dim) 
CA Shape Factor, Dimensionless 
Cn Constant at Position/Index “n” 
ct Total System Compressibility (psia-1) 
cti Total System Compressibility at Pi (psia-1) 
h Net pay (ft) 
K0 Bessel Function 
K1 Bessel Function 
OGIP Original-Gas-In-Place (scf) 
m(p) Pseudo-pressure of “P” (psia2/cp) 
m(pi) Pseudo-pressure of “Pi” (psia2/cp) 
∆m(p) Change in Pseudo-pressure 
m(p)’ Derivative of pseudo-pressure w/r ln(t) 
n Index  
P Pressure (Psia) 
Pi Initial Reservoir Pressure (psia) 
Pwf Flowing Sandface Pressure (psia) 
pD Dimensionless Pressure 
pD’ Dimensionless Pressure Derivative w/r ln(tD) 
pD(s) Dimensionless Pressure in Laplace Space 
qg    Gas Rate at Standard Conditions (MMscf/d) 
Qg Cumulative Gas Produced (MMscf) 
s’ Wellbore Skin 
s Laplace Variable 
Swi Initial Water Saturation (fraction) 
t Time (hrs) 
ta Pseudo-time (hrs) 
tD Dimensionless Time referenced to rw 
tDa Dimensionless Pseudo-Time referenced to rw 
tDA Dimensionless Time referenced to Area (A) 
k Permeability (md) 
rw Wellbore radius (ft) 
rwa Apparent Wellbore Radius (ft) 
rD Dimensionless radius (Dim). 
Tf Formation Temperature (oR) 
xD Dimensionless X-Coordinate of Well 
yD Dimensionless Y-Coordinate of Well 
xDo Dimensionless X-Coordinate of Observation Point 
yDo Dimensionless Y-Coordinate of Observation Point 
γ Euler’s Constant 
γm Permeability Modulus 
φ Porosity  
μg  Gas viscosity (cp) 
μgi  Gas viscosity at Pi (cp) 
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σ Stress 
zwf Real gas deviation factor evaluated wellbore pressure (Dim) 
zi Real gas deviation factor evaluated at initial reservoir pressure (Dim) 
 
 
Subscripts: 
a Pseudo-time 
A Area 
D Dimensionless 
g Gas 
i Initial 
PSS Pseudo-steady state 
t Total 
wf Wellbore Flowing 
w Wellbore 
m Modulus 
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Appendix 1 – Superposition and Single Well Type Curve Generation 
The principle of superposition means the presence of one boundary condition does not affect the response produced by the 
presence of other boundary or initial conditions, and that there are no interactions among the responses produced by the 
different boundary conditions. 

The fact that most continuity equations developed in fluid flow in porous media applications are linear,   permits the use 
of a powerful tool – the principle of superposition – in solving them with or mixed, inhomogenous (linear) boundary 
conditions8. Briefly, the principle of superposition states that if pD1 and pD2 are two particular solutions of a, homogeneous 
linear partial differential equation, then pD1 and pD2 are also particular solutions (1) where C1 and C2 are constants that satisfy 
the new desirec boundary conditions. 

 )()( 2111 DDD pCpCp +=       (1)  

In typical reservoir engineering applications, (1) can be expressed in a general case as show in (2), where again the constants 
are adjusted so that the “new” boundary conditions are satisfied.   In certain cases, the summation in (2) may need to be 
extended to infinity in order to satisfy the desired boundary conditions.  Note, (2) is expressed in dimensionless for according 
to definitions in Appendix 10. 
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In order to ensure a no-flow boundary condition, (2) must be evaluated such that dpD/dn = 0 along the proposed boundary.  
Note, the impact all pseudo image wells and the real well must be taken into account.  If one considers all real and pseudo-
image wells, the normal derivative at any point on the boundary can be written as (3) shown below, where xDo and yDo 
represent observation points on the boundary.  The angle (α) is the boundary angle and is measured from the positive 
horizontal axis to the normal line.  If Cn is adjusted such that (7) is zero at all test points, then a suitable boundary condition 
has been met.  Equation (3) is the Laplace formulation of the problem. 
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In solving (3) for Cn, an M x N results, where N represents the number of image wells, and M represents the number of test 
points along the desired reservoir boundary.   If there are more test points than pseudo image wells, the solution is met in an 
average sense and can be solved using least squares reduction or other matrix solution processes.  If M = N, the solution is 
met exactly at the test points with little or no control at boundary positions in between the test points.    The procedure is then 
repeated for each additional real well in the system.  Once type curves are generated for each real well, they are inverted to 
real space. 
 
Appendix 2:  Pressure Forecasting (Single or Multi Well Systems) 
Once type curves have been generated for each well in the system, pressure profiles for multiple wells with a varying rate can 
easily be generated using conventional superposition methods as shown in (4).  The integer “Nt” represents the current time 
step; “ti” represents the previous time steps; “R” represents the well of interest; and finally “NR” represents the total number 
of real wells in the system.   Note (12) is based upon pseudo-time (Appendix 7) for gas systems, but can be replaced with 
conventional time for linear fluid systems. 
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      (4) 

 
Appendix 3:  Production / Rate Forecasting 
Once type curves have been generated for each well in the system, production profiles can be generated for each well with 
varying specified line pressure.   However, the procedure is somewhat more complicated than generating pressure profiles at 
outlined in Appendix 2.  Although a number of convolution and deconvolution methods were reviewed, the most effective 
method was found to be “back-calculating” the necessary rate at a specified time to meet the desired back pressure.    As an 
example, (5) shows the matrix formulation for the general real well case where a different backpressure has been specified 
for each well.    Generally speaking (5) is just a re-arrangement of (4) for the last unknown rate in the rate schedule.  A matrix 
solution is required as we want to determine the rates of each well while incorporating the influence of the offset wells.   The 
unknown rates Δgg,n can be solved using x = A-1b where A represents the desired backpressure at each well and b represents 
previous production.            

(5) 
      
.     
  
 
  

  
  
 
     
      
Appendix 4: Green’s Functions (Laplace Space Solutions) 
The appropriate Laplace space Green’s function3,26 for a cylindrical source is shown  in (6) and assumes an unbounded 
infinite reservoir.   In order to ensure the desired boundary condition (i.e. a no-flow boundary), the pressure gradient normal 
to the boundary must be equal to zero.    
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The derivatives of (6) with respect to xD and yD at an arbitrary location (i.e. an observation point on the reservoir boundary) 
are shown in (7) and (8).  The normal derivative at some test point on boundary is given by (6).  The derivation of (7) to (8) 
can be found in Hong-Chen14, and other sources.  Note, rD = (ΔxD
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Appendix 5: Semi-Log Behavior  
Bourgeois19,37 showed that if one considers a vertical fully penetrating well in a homogeneous infinite-acting reservoir, then 
the asymptote for real space solution in (10) is graphically equivalent to the asymptotic Laplace space solution in (11).  
Specifically, plots of pD (tD) vs. tD and s.pD(s) vs. 1/s have the same asymptote behavior which is the well-known semi-log 
straight line.  The plots in real space and Laplace space are not exactly the same, but its does imply that pD(s) can be 
converted to real space by simply multiply by s = 1/tD for a given tD = 1/s as summarized in  (12).   Similarly, Schapery43 
showed that if radial flow exists, then the inverse of the Laplace transformation can be approximated by (13).  Later, 
Najurieta44 introduced an improved Schapery technique which materializes in the form of (14). 
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Appendix 6:  Anisotropic Reservoirs 
The following equations are used to calculate an equivalent isotropic reservoir from an anisotropic reservoir.  Absolute 
permeability is calculated using (15), where kx and ky represent permeability in the x and y-directions respectively, and are 
considered to be the principal permeabilities51. The specified dimensions in the x and y-direction are transformed into new 
dimensions using (16) and (17).   The solution process remains constant when expressed in the new coordinate system.  
However, permeability as defined by (15) must be used in replace of k in all dimensionless time and pressure definitions etc. 
 

5.0)( yxkkk =           (15) 
 

5.0)/( xoldnew kkxx =          (16) 
 

5.0)/( yoldnew kkyy =          (17) 
 
Appendix 7:  Sectional Permeability 
Sectional permeability is incorporated into the solution process using the well known Hawkin’s46 formula shown in (18), 
where ka and ra represent the permeability and radius of permeability section within the well vicinity.  The radius ra is 
calculated from the area of the permeability section assuming a circular drainage region as defined in (19). For anisotropic 
reservoirs, Furui et al47 presented an equation for calculating skin factor as shown in (21), where rdH represents the “long” 
direction along the transformed ellipse. For this paper, kx is defined as the maximum principle permeability. 
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Appendix 8:  Pseudo-Time and Pseudo-Pressure 
For long-term multi-well drawdown in bounded reservoirs, the formulation of pseudo-time based upon material balance is 
given below in (22).  As can be seen, the pseudo-time calculation requires that average reservoir pressure be determined 
which makes the rate prediction process in Appendix 8 iterative.   Gas rates and average reservoir pressure are based on total 
pool production.  If all wells are shut-in, then the pseudo-time calculation reverts to numerical evaluation.   Note, pseudo-
time is typically denoted by a subscript “a”. For (22) to be used with a CBM gas simulator, it must account for the desorption 
compressibility of the coal or shale, which is defined by (26). However, a simple approximation can be accomplished (and 
the original solution process unaltered) by using a proxy permeability in the dimensionless time definition as defined by (27) 
and (28). 
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Pseudo-pressure is commonly used in well test analysis of gas reservoirs 23,24,26,27,28.  The formulation used in this work is 
presented in (29).  
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Appendix 9:  Absorbed Gas Material Balance 
Equation (30) was first presented by Clarkson & McGovern45 in a previous paper.  However, it is important to note that it 
incorporates the free-gas storage in the macrpores (fractures + matrix) as well as the absorbed component.  
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Appendix 9:  Pseudo-Steady State and Reserve Analysis 
For long term production at a constant rate, (31) can be used to represent pseudo-steady state flow in dimensionless 
terms23,24,25,26,27,28.   The Bourdet derivative associated with this equation is shown in (32).  When appropriate, (31) and (32) 
were used to evaluate the PSS of the pseudo image well approach. 
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Appendix 10:  Dimensionless Variable Definitions 
The following definitions for dimensionless variables are used throughout this paper.    
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Figure 1.  Location of Control Points and Image Wells (ft) 
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Figure 2. Numerical Validation Example (Archer) 
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Figure 3: Numerical Validation Example (Rattu) 
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Figure 4. Stefest vs. Approximate Solution for Homogeneous Reservoir 
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Figure 5.  Stefhest vs. Bourgeois for Dual Porosity 
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Figure 6. Stefhest vs. Bourgeois for Wellbore Storage 

 
 

Figure 7. Stefhest vs. Other Approximations 

 
 
 

Figure 8. Desuperposition Applicabilitiy to Heterogeniety (Composite) 
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Figure 9. Comparison of Explicit & Approx. Comp. Models 
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Figure 10. Comparison of Explicit & Approx. Comp. Models 
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Figure 11. Comparison of Explicit & Approx. Comp. Models 
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Figure 12.  Effect of the Lens Shape and Well Position 

 
 
 

Figure 13.  Comparison of Explicit & Approx. Comp. Models 

   
Figure 14.  Comparison of Explicit & Approx. Comp. Models 
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Figure 15.  Comparison of Explicit & Approx. Comp. Models 

 
 
 
 
 

Figure 16.  Comparison of Explicit & Approx. Comp. Models 
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Figure 17.  Comparison of Explicit & Approx. Comp. Models 

 
 
 

Figure 18.  Comparison of Explicit & Approx. Comp. Models 
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Figure 19.  Comparison of Explicit & Approx. Comp. Models 
 

 
 

Figure 20.  Pressure Drawdown for Symmetrical 4 Well Reservoir Case and Single Well in ¼ Reservoir 
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Figure 22.  Streamline (Pressure Vector Map) for Symmetrical 4 Well Reservoir 

 
 
 

Figure 22  Comparison of 4 Well and Single Well Models 
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